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Abstract

As measurement uncertainties are closely tied up with error models, it might be of in-
terest to review a model, which the author assigns to "Metrological Statistics". Given
that the random errors are normally distributed, the experimentalist could either refer to
B.L. Welch's concept of "effective degrees of freedom" or to the multidimensional Fisher-
Wishart distribution density. In the first case, different numbers of repeated measure-
ments are admissible, in the latter it is strictly required to have equal numbers of repeated
measurements. In error propagation, however, only the latter mode of action opens up
the possibility of designing confidence intervals according to Student and confidence el-
lipsoids according to Hotelling. Another point of view, closely linked to the choice of the
numbers of repeated measurements, refers to the customary practice of attributing equal
rights to statistical expectations and empirical estimators. However, the Fisher-Wishart
distribution density suggests using only the information which is realistically accessible to
experimentalists, namely empirical estimators. For the handling of unknown systematic
errors, either the existence of a (rectangular) distribution density may be assumed or,
and this is proposed here, they may be classified as time-constant quantities, biasing ex-
pectations and suspending a lot of tools and procedures of error calculus well-established
otherwise.

1 Introduction
The joint propagation of random errors and unknown systematic errors currently places
the experimentalist in the following dilemma.

In regard to the propagation of random errors, there are, at least in principle, two
different choices. If one is willing to accept unequal numbers of repeated measurements
of the physical quantities to be combined within a given function, one has, in order to
express the influence of random errors, to resort to B. L. Welch's sophisticated concept
of so-called numbers of effective degrees of freedom [8]. However, this procedure is tied
up with difficulties: it is restricted to independent variables.

Though B. L. Welch's concept completely exhausts the information implied in meas-
ured data, unfortunately, from a metrological point of view, it is cumbersome to handle
and obstructs the view to existing simpler procedures. On the other hand, if the ex-
perimentalist preferred equal numbers of repeated measurements, he would - if need
be - have to give away part of his information, namely that which is carried by the
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excessive numbers of repeated measurements of the variables involved. Up to now, the
disregarding of excessive numbers is regarded as unfavourable. In spite of this view,
just this precaution opens up a toolbox of applied statistics hitherto closed to metrolo-
gists, as only with equal numbers of repeated measurements, is the experimentalist in
a position to call upon the standard model of statistics for jointly normally distributed
random variables, i.e. the Fisher-Wishart density [3]. The advantages gained in that
way outweigh by far the "lost information", as relatively few repeated measurements of
experimental set-ups, operating in a stationary mode, are able to locate accurately the
respective physical quantities. After all, in error propagation the experimentalist may
define confidence intervals according to Student (Gosset) including any number of vari-
ables. In least squares, he may even establish multidimensional confidence intervals, and
last but not least, certain problems of classical error calculus, such as the Fisher-Behrens
problems no longer arise.

In regard to the interpretation and propagation of unknown systematic errors, the
situation is not simpler. Let us assume that an unknown systematic error f, constant in
time, is confined to an interval of the kind'

-f 8 < f < fh, fh>O. (1.1)

Now, the experimentalist may either assign a postulated probabilty density to f, usually
a rectangular density [7],

1 (1.2)

or he may set without exception

f constant, (1.3)

where f lies anywhere within (1.1). The latter interpretation introduces biased estim-
ators, leading to a break-down of many procedures of error calculus otherwise well-
established.

Seen mathematically, both interpretations should be justified. In the case of (1.2),
the combination of random and systematic errors should be carried out geometrically,
in the case of (1.3), arithmetically. Regarding (1.3), the author suggests adding lin-
early Student's confidence intervals to appropriately designed worst-case estimates of
the propagated systematic errors, and no probability statements should be associated
with so-defined overall uncertainties.

2 Error propagation

The fundamental error equations of Metrological Statistics are given as follows [4]. Let
x0 designate the true value of the physical quantity x to be measured. Furthermore, let
El be the random error and f., = constant the unknown systematic error corresponding

IShould the interval be unsymmetrical to zero, it could be symmetrized by subtracting the halved sum of the

upper and lower boundary - the same quantity would have to be subtracted from the data.
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to (1.1). We then have

xi = xo + El + fx, l=1,... ,n. (2.1)

Let Ix = xo + fx be the expectation of the random variable X = {x 1 , x 2 ,... ,xn}, so
that the x, are some of its realizations. We then find

xl=btx+-I, I=1,... ,n. (2.2)

Furthermore, let - = 1/n 1 x, denote the arithmetic mean. We then have the useful
identities

X1 X0 + (xi - tx) + h, 0=Xo + (t - PX) + f. (2.3)

While the arithmetic mean is biased, the empirical variance

SX n -1 (xt - ) (2.4)
1=l

is not. For the time being, let us consider just two quantities to be measured, x and y.
As robust and simple uncertainty assessments are a matter of linearization, the overall
uncertainty up of a given function ¢ (x, y) is proposed to be [5],

= ,p(n 1) 8/ 2 +82+2 (Ž 8& & + 2 82+ 2,+,

(2.5)

where ts,p (n - 1) is the Student-factor corresponding to a confidence level P. We dis-
tinctly see how the empirical covariance

1
S Y = n (x - -) (y1 - y)

enters the empirical variance of the € (x,, yl); I = 1,... ,n, given by
2 2 22 -= =1 =\0 9) 2 ) 2 2 Y t0

The final result

0 (X-, Y) + u, (2.6)

is expected to localize the true value € (xo, yo) with "reasonable certainty" - but no
proper confidence statement should be added, as uO is a mixture of a statistical and
a non statistical component. The last term in (2.5) may overestimate the uncertainty,
on the other hand linearization errors have been negleted. After all, this uncertainty
statement should fulfill the prerequiste to be safe, robust and simple.

If there are m quantities to be measured, we replace the notation 2, 9 by xl, x2 ,. • tm.
Then the overall uncertainty u¢ of the final result

S(21l,2-2 .... .. tm) ±" U¢
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is given by

- ts,p (n - 1) f ,, s (2.7)
L , p"i--1asx. (2.7)

When (2.5) and (2.7) are compared, it becomes obvious that the proposed formalism
of error propagation works like a building kit, perspicuous and easy to handle. There are
arguments against (2.7), in particular that an experimentalist who wishes to design his
uncertainties in this way, would have to know the complete set of repeated measurements,
in other words, the complete empirical variance-covariance matrix

s = (sij), i~J =-1,2,... ,m, (2.8)

of the input data. Arguably, this is true, but in the days of computers and the internet
such a challenge should no longer be apt to provoke difficulties worth mentioning. An-
other argument, that (2.7) might overestimate overall uncertainties, should be judged in
view of the unique role of metrology in science. Standing "between" theory and experi-
ment, metrology pursues the idea to localize reliably the value of the physical quantity
in question.

3 Least squares

Let

A/3 f x (3.1)

be a linear system of equations to be adjusted. Here, A designates the m x r design
matrix of rank r, /3 the r x 1 vector of unknowns and, finally, x the m x 1 vector of
the observations or input data. We assume m > r. The idea of least squares is of purely
geometrical origin.

In what follows, AT denotes the transpose of A. The idea is to project the vector x
by means of a projection operator

P = A (ATA)- 1 AT (3.2)

orthogonally onto the column space of the matrix A, and the result is

= (ATA)-'ATX. (3.3)

As the solution vector /3 is linear in the input data, the transfer of (2.7) to its components
)3k, k = 1, . . . , r, is straightforward.

Clearly, the orthogonal projection is in no way dependent on the error model implied.
In contrast to this, the latter turns out to be crucial in regard to uncertainty assessmenits.
Let us consider a set of single observations

xi =xo,i +6i +fi= xo,i+ (Xi -[ti) +fA, i l,...,ým) (3-4)

being the input data, where E {Xi} = #i. Writing (3.4) in vector form, we have

X = X0 + (X -U) + f (3.5)
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where
X---- (Xl, X2,.. ,Xm)T ' X0 = (X0,1, X0,2, ... IX0,m)TI

Az = (Al, P2,..,IM)r, f = (fl, f2,... , f,.)T, -fý"i <_ fi •_ f8 ,i.

Given equal variances or2 = E {(Xi - Ii)2}, the minimized sum Qmin of squared

residuals of the adjusted system (3.1) should yield, according to quite familiar procedures,
an estimator s2 p Cr2. However, from

Qmn -= (x - Px)T (x - Px),

we obtain something different, namely

E {Q min} = C2 (m - r) + fTf _ fTpf. (3.6)

As we see, even the simplest of all associated least squares procedures breaks down,
should the model of time-constant unknown systematic errors be accepted. At the same
time the related basic tool linked to Qm in and frequently used, namely the test of con-
sistency of the input data based on the criterion

Qmin/S
2 z m - r

breaks down as well. Indeed, during many decades, time and again, the observation

Qmin/S 2 >> m - r

has stunned experimentalists [2], so that, in the adjustments of the fundamental physical
constants, even the abolition of least squares has been considered [1]. However, in view
of (3.6), these observations are understandable.

After all, a least squares adjustment of biased input data requires arithmetic means

xi = xo,i + (j2i - pi) fi, i = 1,... , m, (3.7)

so that the empirical variances and covariances
1

1 Sii S?(3.8)sij = (Xi - 2,) (xj -= ,3./=1

are known a priori. Replacing (3.5) by

t = X0 + (t- 1) + f (3.9)

instead of (3.3), we find

= (ATA)-' ATt. (3.10)

A matter of similar concern refers to the break-down of the Gauss-Markoff theorem. In
view of (3.9), the solution vector fi is biased, so that the experimentalist is no longer in
a position to obtain a weight-matrix from the variance-covariance matrix of the input
vector t. Consequently, simple, optimized adjustments, to which we are customarily
used, must be ruled out. Nevertheless, we may multiply (3.1) from the left with any
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non-singular weighting matrix, e.g. with a diagonal one,
1

G = {gl,g,... ,gm}, g = 1, (3.11)Ugci

and adjust the weights gi by trial and error in order to find the shortest possible uncer-
tainty intervals. As has been shown, this method is also able to detect inconsistencies
among the input data, [6]. Indeed, as a non-singular weight-matrix cannot shift the true
solution vector 13o, we are allowed to proceed this way.

To assign uncertainties to the components /3k; k = 1,... , r of the solution vector /3,
we refer to (2.7). To abbreviate the notation, we set in (3.10)

B = A (A TA)l (3.12)

where the elements of the matrix B will be designated by bik. Upon insertion of (3.9)
into (3.10), we arrive at

,3 = BTxo + BT (. -_u) + BTf. (3.13)

Evidently, 30 = BTxo is the true value of the estimator /3. Setting pý = E {i} =

/30 + BTf, we may define the theoretical variance-covariance matrix

which, however, remains numerically inaccessible. Consequently, the only thing we can

do is to resort to the empirical variance-covariance matrix

( '& ') = B sB, k 1,2,.. ,r, (3.14)

whose elements are given by

MkV E = •Objk'Sij, 
5
13 2• = 2 (3.15)

Clearly, the sij are the elements of the empirical variance-covariance matrix s of the
input data, as has been stated in (2.8) and (3.8).

These procedures presuppose, as has been pointed out, equal numbers of repeated
measurements within each of the m means (3.7). The components /Ak of the solution
vector may be written as

1 n Mi

= -n &kl with &Ik bikXil; k = ,.._ ,r. (3.16)
n 1=1

Evidently, the &3a are independent and normally distributed. Let IUak denote the
expectations

Ea INE{), k 1,....r (3.17)
of the/ 3 k. Looking for just any one of the 1k,

tsP (n - •) t s ,p (n - 1)Ok VI- 1sn _zk _ + V•n s&k (3.18)
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is a confidence interval according to Student, where ts5 p (n - 1) is the Student-factor.
This interval localizes p with confidence P.

The components of the third term on the right-hand side of (3.13) are given by

f bikfi,k= 1... ,r. (3.19)
i--1

Worst-case estimates are
m

f,= lbiklfs,il, k = 1,... r. (3.20)
i=1

After all, the overall uncertainties UN of the components of the solution vector /f, con-
sidered and employed individually, are proposed to be

U&=ts, p (n - 1) S lkk(.1u~ ~ + fs.$k, k =1,... ,'r. (3.21)

4 Uncertainty spaces
The component representation of (3.13),

flk = f)O,k + bik (-ti - yi) + bikfi (4.1)
i=1i1

reveals the couplings between the least squares estimators. Those due to random errors
may be expressed by means of Hotelling's density [3]. The last term on the right-hand
side of (4.1),

fk =Zbikfi, k=l,...,r, (4.2)

expresses the couplings due to systematic errors. The r components f&k map the m-
dimensional hypercuboid

-fs~i :_ fi :_ f,i, i = 1 ... r, (4.3)

onto the r-dimensional space, yielding a convex polytope. Both solids may be combined
to an overall uncertainty space, resembling a "convex potato". Figures 1-3 show the
confidence ellipsoid, the "security polytope" and the combination of both to an overall
uncertainty space for the example of a least squares adjustment of a circle.

5 Conclusion
As computer simulations reveal, the approach presented here leads to measurement un-
certainties safeguarding physical objectivity in the sense that uncertainty intervals re-
liably locate the values of the physical quantities in question. With such a distinct
statement, the traceability of units and standards will certainly be maintained.
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FIG. 1. Confidence ellipsoid, security polytope, overall uncertainty space resembling a
"convex potato".
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